

Cambridge O Level

PHYSICS

5054/32

Paper 3 Practical Test

October/November 2023

MARK SCHEME

Maximum Mark: 30

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of **9** printed pages.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

- 1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.
- 2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
- 3 Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).
- 4 The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.
- 5 'List rule' guidance

For questions that require ***n*** responses (e.g. State **two** reasons ...):

 - The response should be read as continuous prose, even when numbered answer spaces are provided.
 - Any response marked *ignore* in the mark scheme should not count towards ***n***.
 - Incorrect responses should not be awarded credit but will still count towards ***n***.
 - Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should **not** be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
 - Non-contradictory responses after the first ***n*** responses may be ignored even if they include incorrect science.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations

Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.

State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Question	Answer	Marks
1(a)(i)	l_0 recorded to the nearest 0.1 cm ;	1
1(a)(ii)	l_1 recorded and $> l_0$ and e correctly calculated ;	1
1(a)(iii)	correct calculation of k ;	1
1(a)(iv)	view ruler perpendicular to the scale / read the scale at eye level ;	1
1(b)(i)	t_1 recorded in Table 1.1, and with correct notation and to at least 1 d.p ; t_2 recorded in Table 1.1 within 1 s of t_1 ;	1
1(b)(ii)	values for t present and correct ;	1
1(b)(iii)	T , T^2 correct ;	1
1(b)(iv)	$k_2 = 25 \pm 5 \text{ N/m}$;	1
1(c)	the effect of timing error (reaction time error) is reduced / the timing error is spread out over 20 oscillations / reduces the percentage error / reaction time error is less significant / owtte ;	1

Question	Answer	Marks
2(a)(i)	temperature recorded to the nearest 0.5°C ;	1
2(a)(ii)	temperature recorded and $<$ (a)(i) ;	1
2(a)(iii)	to give the (thermometric) liquid time to expand / to allow thermometer to reach the temperature of the hot water / to allow thermometer to respond / reach its maximum reading / owtte ;	1
2(b)	both temperatures recorded for thermometer in the lower position ;	1
2(c)(i)	calculation correct ; unit consistent with calculation: °C / minute ;	2
2(c)(ii)	calculation correct and consistent with their results ;	1

Question	Answer	Marks
2(d)(i)	Clear reference to their results and stirring needed to make the temperature uniform throughout the liquid / to ensure the cooling rate is the same throughout / owtte;	1
2(d)(ii)	<p><i>the thermometer is in a constant position in the liquid:</i> thermometer is held steady in a clamp so it will keep thermometer at the same depth when doing the experiment / taking readings, owtte ;</p> <p>OR</p> <p><i>thermometer is held so the scale's visibility is optimised:</i> scale can be rotated in clamp to face observer so they see the scale more easily, owtte ;</p> <p>OR</p> <p><i>where the clamp holds the thermometer:</i> thermometer is long enough to be clamped without jaws obscuring the part of the scale being used / clamping the thermometer above the 90 degree mark, owtte ;</p>	1
2(d)(e)	any one from: ; mass / volume / quantity of water room temperature initial temperature of water same beaker same thermometer timing of the experiment	1

Question	Answer	Marks
3(a)	V_0 present, $>1.5\text{ V}$ and $<3.5\text{ V}$;	1
3(b)	V present (and above zero) and $< V_0$ <u>and</u> I present (and not zero) and I to at least 2 decimal places ;	1
3(c)	all columns with quantity, separator and correct unit ; 5 sets of data with correct trend (as I increases, V decreases) <u>and</u> same number of decimal places down each column ;	2

Question	Answer	Marks
3(d)	axes labelled with quantity and unit ; scales linear and not awkward ; all points plotted accurately, to the nearest $\frac{1}{2}$ square ; thin best-fit straight line drawn ;	4
3(e)(i)	values indicated and $\geq \frac{1}{2}$ the line (between first and last plot) used ; <i>m</i> working shown and correct calculation ;	2
3(e)(ii)	candidate's intercept on y-axis (when $x=0$) value $\pm \frac{1}{2}$ small square ;	1
3(f)	statement matches results; correct calculation to support the statement using both values of V_0 ;	2
3(g)	one from: <u>wire</u> becomes too hot / current exceeds full scale deflection of ammeter / current becomes too large (for the ammeter) or cannot get reading because wire covered in insulating tape;	1

Question	Answer	Marks
4	<p>method</p> <p>MP1: mention of use of stopwatch and either metre rule / ruler / measuring tape or balance;</p> <p>MP2: measure stopping distance and time taken;</p> <p>MP3: repeat with extra masses(weights) loaded onto the trolley;</p>	3
	<p>key variables</p> <p>MP4: one from: ; height of end of ramp above bench / angle of ramp release position on the ramp same trolley</p>	1
	<p>table</p> <p>MP5: table with columns for mass and distance and time with appropriate units ;</p>	1
	<p>conclusion</p> <p>MP6 : calculate the average speeds and either compare the results to see if / how the mass of the trolley affects the average speed or plot a graph of average speed vs mass</p>	1